
Scheme of 3rd int
Course: ARM embedded systems [18EC753] (open elective)
Sem: 7th sem
Dept. Of ETE, JNNCE, Shimoga
1a.
List out the problems faced by Compiler. Explain the Effect of local variable types by considering
Checksum function.

1b.Infer and explain the Efficient Use of c types:
■For local variables held in registers, don’t use a char or short type unless 8-bit or 16-bit modular
arithmetic is necessary. Use the signed or unsigned int types instead.
Unsigned types are faster when you use divisions.
■ For array entries and global variables held in main memory, use the type with the smallest size
possible to hold the required data. This saves memory footprint. The ARMv4 architecture is efficient
at loading and storing all data widths provided you traverse arrays by incrementing the array pointer.
Avoid using offsets from the base of the array with short type arrays, as LDRH does not support this.
■ Use explicit casts when reading array entries or global variables into local variables, or writing local
variables out to array entries. The casts make it clear that for fast operation you are taking a narrow
width type stored in memory and expanding it to a wider type in the registers. Switch on implicit
narrowing cast warnings in the compiler to detect implicit casts.



Scheme of 3rd int
Course: ARM embedded systems [18EC753] (open elective)
Sem: 7th sem
Dept. Of ETE, JNNCE, Shimoga
■ Avoid implicit or explicit narrowing casts in expressions because they usually cost extra cycles.
Casts on loads or stores are usually free because the load or store instruction performs the cast for
you.
■ Avoid char and short types for function arguments or return values. Instead use the int type even if
the range of the parameter is smaller. This prevents the compiler performing unnecessary casts.

2a.List out all the ARM Processor Exceptions and associated Modes. Explain the core actions during
mode change.



Scheme of 3rd int
Course: ARM embedded systems [18EC753] (open elective)
Sem: 7th sem
Dept. Of ETE, JNNCE, Shimoga

2b.Infer and explain the Portability issues in ARM processors.
 Unaligned data pointers: Some processors support the loading of short and int typed values from

unaligned addresses. A C program may manipulate pointers directly so that they become
unaligned, for example, by casting a char * to an int *.

 Endian assumptions: C code may make assumptions about the endianness of a memory system,
for example, by casting a char * to an int *.

 Function prototyping: The armcc compiler passes arguments narrow, that is, reduced to the
range of the argument type. If functions are not prototyped correctly, then the function may
return the wrong answer.

 Use of bit-fields: The layout of bits within a bit-field is implementation and endian dependent.
 Use of enumerations: Although enum is portable, different compilers allocate different numbers

of bytes to an enum.
 Inline assembly: Using inline assembly in C code reduces portability between architectures.
 The volatile keyword: Use the volatile keyword on the type definitions of ARM memory-mapped

peripheral locations. This keyword prevents the compiler from optimizing away the memory
access. It also ensures that the compiler generates a data access of the correct type.

3a.Write short notes on vector table with typical vector table diagram.
vector table : a table of addresses that the ARM core branches to when an exception is raised.
These addresses commonly contain branch instructions of one of the following forms:
 B <address>—This branch instruction provides a branch relative from the pc.
 LDR pc, [pc, #offset]—This load register instruction loads the handler address from memory to

the pc. The address is an absolute 32-bit value stored close to the vector table. Loading this
absolute literal value results in a slight delay in branching to a specific handler due to the extra
memory access. However, you can branch to any address in memory.

 LDR pc, [pc, #-0xff0]—This load register instruction loads a specific interrupt service routine
address from address 0xfffff030 to the pc. This specific instruction is only used when a vector
interrupt controller is present (VIC PL190).

 MOV pc, #immediate—This move instruction copies an immediate value into the pc. It lets you
span the full address space but at limited alignment. The address must be an 8-bit immediate
rotated right by an even number of bits.



Scheme of 3rd int
Course: ARM embedded systems [18EC753] (open elective)
Sem: 7th sem
Dept. Of ETE, JNNCE, Shimoga

3b.Explain the fundamental components of Embedded operating system.
 Initialization is the first code of the operating system to execute and involves setting up
internal data structures, global variables, and the hardware. Initialization starts after the
firmware hands over control. For hardware initialization an operating system sets up various control
registers, initializes the device drivers, and, if the operating system is preemptive, sets up a periodic
interrupt.
 Memory handling involves setting up the system and task stacks. The positioning of the stacks

determines how much memory is available for either the tasks or the system. The decision as to
here the system stack is placed is normally carried out during operating system initialization.
Setting up the task stack depends upon whether the task is static or dynamic.
 A static task is defined at build time and is included in the operating system image. For

these tasks the stack can be set up during operating system initialization. For example,
SLOS is a static-task-based operating system.

 A dynamic task loads and executes after the operating system is installed and executing and
is not part of the operating system image. The stack is set up when the task is created (for
example, as in Linux).

 The scheduler is an algorithm that determines which task is to be executed next. There are many
scheduling algorithms available. One of the simplest is called a round-robin algorithm—it
activates tasks in a fixed cyclic order. Scheduling algorithms have to balance efficiency and size
with complexity.

 The device driver framework—the mechanism an operating system uses to provide a consistent
interface between different hardware peripherals. The frame
work allows a standard and easy
way of integrating new support for a particular peripheral into the operating system.

4a.Write short notes on firmware and bootloader.
The firmware is the deeply embedded, low-level software that provides an interface between the
hardware and the application/operating system level software. It resides in the ROM and executes
when power is applied to the embedded hardware system.
Firmware can remain active after system initialization and supports basic system operations.
The bootloader is a small application that installs the operating system or application onto a hardware
target. The bootloader only exists up to the point that the operating system or application is
executing, and it is commonly incorporated into the firmware.



Scheme of 3rd int
Course: ARM embedded systems [18EC753] (open elective)
Sem: 7th sem
Dept. Of ETE, JNNCE, Shimoga

4b.Explain the concept of link register offset with use of SUB and SUBS in handler code
 When an exception occurs, the link register is set to a specific address based on the current pc.
 For instance, when an IRQ exception is raised, the link register lr points to the last executed

instruction plus 8.
 Care has to be taken to make sure the exception handler does not corrupt lr because lr is used to

return from an exception handler.
 The IRQ exception is taken only after the current instruction is executed, so the return address

has to point to the next instruction, or lr − 4.




